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Overview 
The scene consists of a central sphere in with a particle system surrounding it, with a controllable 

wave system that can be sent through to the sphere. In front of the sphere is a plane where a post 

processing technique (kuwahara filter) can be demonstrated on a texture. The post processing 

technique can also be applied to the whole scene and the effect can be controlled in the GUI as well. 

To the left the sphere is another plane demonstrating dynamic tessellation on a manipulated height 

map. The tessellation and manipulation values of this plane can also be controlled with in the GUI. 

Two point lights that can be toggled into spot lights are rotating around the middle casting a shadow 

onto a flat plane below. 

UI 
The UI uses collapsible headers each handling the variables that affect different parts of the scene. In 

Enable there are check boxes that let you enable and disable objects around the scene. In Wave 

options you can edit values, such as: the wave like wave origin, speed, frequency and amplitude. For 

the Tessellation options you can change the maximum and minimum tessellation values and the 

maximum distance tessellation will occur at. You can also affect the wave being passed through the 

tessellated mesh, in the same way as the previous wave options. Light options allows you to change 

the colour, attenuation values, and whether the light is a spotlight or not and the spotlights 

exponent. The Post processing and Kuwahara options are identical, allowing you to change the 

radius of the subregions of the filter samples. 

Algorithms and Data Structures 

Vertex Manipulation 
A wave ripple effect is applied to a sphere in the scene using a vertex shader. To create the ripple 

effect on the sphere, a 2D ripple effect equation from Josh Marinacci on his blog (marinacci, 2018) 

was adapted to be applied to a 3D surface. This worked through taking the equation to calculate the 

Y displacement from the X and Z positions and applying it to the displacement of every axis in 

respect of the two other components’ positions. To ensure the right displacements occurred in each 

axis, their displacements were multiplied by their corresponding normal components giving a clean 

ripple effect through a sphere. The wave’s height, amplitude, frequency, speed and the ripples origin 

can be changed in real time. The same vertex manipulation is applied to the particles. 

 

Code snippet of the vertex 3D wave ripple  
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Wave manipulation being applied to sphere and particles 

 

For the tessellated plane, a height map is passed through to the domain shader and using the value 

of the texture is what gives the height displacement. The height map’s displacement is also 

dynamically changed by using a sine wave to generate a value with which to multiply the height 

map’s displacement by. If the value is less than zero, a value of zero is returned instead, thus 

applying no displacement at that vertex and creating a flat plane. 

 

 

Tessellated displaced terrain 

 Like the sphere’s wave all the same parameters can be changed apart from wave’s direction/ origin. 

To pass these wave values to the different shader stages a standardised struct was created to allow 

ease of passing to different shaders that may use the same values to pass to a buffer. 
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Tessellation 
Tessellation is applied to a custom control patch plane to which a height map is being applied. This 

was to be accomplished by dynamically tessellating the mesh, depending on the distance from the 

camera. Because we created the mesh, we know the order in which the vertices are to be read, so 

the midpoint of the edge of each quad can be calculated by interpolating between the shared 

vertices of that edge. From that midpoint the distance from the camera to that edge can be 

calculated and tessellated accordingly depending on that value. For the middle tessellation factor, 

the mid point of two of the opposite edge mid points is calculated. Since the edge is shared between 

quads the tessellation for that edge is consistent between the two quads causing no popping. The 

flat plane is now being dynamically tessellated by distance, but the plane is to be moved, scaled and 

the vertices to be displaced. The distance to each vertex needs to be accurate for the dynamic 

tessellation to appear effective. To fix this, the same displacement which is being applied in the 

domain shader needs to be applied to the interpolated midpoint to give an accurate distance. While 

applying this change the point is also multiplied by the world matrix. This allows for matrix 

manipulations to be applied and for the distance to remain accurate. Finally, if no displacement is 

being applied it returns a tessellation factor of one for that edge as no detail is required as the 

terrain is flat.  

 

Dynamic Tessellation 

   

Dynamic tessellation being applied based on distance and current height displacement 

For the normals a Sobel operator (Jason Zink, 2011, p. 430) is used for quick efficient normals based 

off the height map. Instead of calculating vectors between surrounding vertices and using the cross 

product to calculate the normal, the Sobel operator uses the surrounding pixels and calculates the 

normal based on the displacement of each of the surrounding pixels. Using this method lets normals 
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be created without needing to know anything about the other vertices. The only problem lies with 

the fact that the height is being dynamically offset so when flat the normals are still being calculated 

for the height map even though the mesh is now flat. To account for this if the offset value is zero or 

less a default normal /  unit vector in the y axis is given, since the plane is generated in the z and the 

x axes, is the normals would be up. Although not fully accurate normals, they are sufficiently close 

and efficient enough that the trade-off is acceptable.  

 

Tessellated height map with normals being calculated through the Sobel operator and Kuwahara filter being applied 

Geometry Shader 
The geometry shader is used for two things. The first is to calculate normals on the manipulated 

sphere. The method that is used takes vectors between all the vertices to one another and uses the 

cross product to generate a normal that should be roughly correct. The reason for doing this in the 

geometry shader is because all the vertices for that triangle is read in and already manipulated, so 

there’d be no need to try calculating the predicted position of an adjacent vertex. As for the particles 

a similar process is done except for each vertex a quad is drawn instead to creating a sphere of 

quads. The quads generated also face outwards in the direction of the normals this is achieved 

through finding the angle between its forward vector and the x component of the normal it’s being 

rotated to. The same is done with the y component, then a rotation matrix for rotation around the x 

and y axis is generated and applied to the points of the quad to get them to face outwards along that 

normal. A offset needed to be applied to the rotation around the x axis however since the back face 

would be rotated by 180° in the x axis and the y the overall rotation would cancel out. For any y 

angle that is less that -90° or greater than 90° the y angle is shifted to not cancel out the rotation 

with the x axis. 

 

Particles rotation counter cancelling out on the back side so the particles end up rotating the same way 
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Pixel Shader 
The scene uses two point lights rotating around the centre sphere to light the scene. The light 

information is stored in a custom struct to be easily passed to the shaders just like the wave 

information for the manipulation. The information is then passed to a buffer where in the w 

component of the position and direction the light type and exponent is packed in as to simplify the 

padding of the buffer. Additionally, a separate buffer is used for attenuation values. In the 

application one main pixel shader is used for lighting. This pixel shader deals with two lights being a 

point or a spotlight. To switch between a point light and a spot light the spot factor is multiplied by a 

value or either one or zero depending on the type and then adding one minus the type so as not to 

multiply the lighting by zero. The spot factor is calculated using the equation found in 3d graphics 

programming for beginners. (Lengyel, 2012, p. 160)  

For the post processing an oil painting effect called the Kuwahara filter was implemented. It’s an 

edge preserving filter used to remove unnecessary detail in high contrast areas but keeps shapes 

boundaries even in low contrast areas. In the application a Kuwahara filter is implemented GPU Pro 

(Engel, 2010, pp. 247-250) . The filter was applied using a pixel shader. It works by sampling four 

subregions surrounding the pixel in the texture you’re currently on. The size of the subregions is 

decided by the radius which can be dynamically set. The next step is to go through each pixel in the 

subregion finding the average colour of that sub region and the overall variance in colour of that sub 

region. After which each sub regions variance is compared with the others and the sub region with 

the least variance’s average colour is set to be the colour of that pixel. This effect is applied to the 

overall screen and a mesh with a texture on it, so it can be viewed independent of the rest of the 

scene. To apply this effect to the scene two passes are done, one where all the meshes are 

generated and all relevant effects are applied which is then rendered to a texture. That texture is 

then passed through the Kuwahara filter pixel shader and rendered to the screen.  

 

 

Kuwahara implementation code snippet 

  

Same Picture with and without the Kuwahara filter applied 
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Kuwahara filter applied to the scene as a whole 

Shadow Mapping 
Using the two lights previously mentioned two shadow maps can be generated. It is important to 

note that although being point lights the direction for the light is just a normal vector going towards 

the centre. To generate the depth maps two depth passes are done where only the geometry that 

we wish to shadow is rendered and a depth value from the light is rendered onto a render texture. 

Repeating this for a second pass with the second light gives us the two shadow maps required. To 

make sure the shadows are accurate the same manipulation needs to be applied to the sphere 

during the depth passes as is being done in the final render. Passing in the same wave information 

and using the same calculation allows this to be achieved. Since the shadows are only appearing on 

the ground plane a shadow shader only needs to be used for the ground mesh. To achieve this 

however with two lights both lights view and ortho matrices need to be passed through the shader 

stages. These are passed within an array to the vertex shader where two positions are generated for 

the vertex from the lights point of view. Now in the pixel shader we can loop through comparing the 

depth value from the shadow map to the depth value of the point to determine whether lighting 

should be done. Since this is done for both lights the overall lighting value for that pixel in time is a 

blend of the two lights including shadows giving the following result. 

 

One Spot light and One Point light generating shadows onto the plane 

Critical Analysis 

Vertex Manipulation 
While implementing the sphere’s manipulations another method was theorized but then scrapped. 

The original method however would be to apply the 2D wave manipulation to a rectangular mesh 
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and then manipulating it into a sphere much like a 2D map of the world onto a globe. It wasn’t used 

in the end as it would take more time to create a mesh for it and then accurate displace a wave 

through it and then map it into a sphere when the other solution had already been theorised and 

would require less steps to achieve the same effect. The aim of the manipulation was to create an 

effect similar to that of an effect in a music video used on a sphere. The waves in the music video 

have variance instead of each being uniform like the solution presented. Given more time the 

solution presented on the book of shaders (Patricio Gonzalez Vivo, 2018) would be implemented in 

with the 3D ripple wave by applying several sine waves of different frequencies, speeds, amplitudes 

and offsets. Several attempts for generating normals for the manipulated sphere were attempted. 

Originally the same manipulation was applied to the surrounding four vertices to find their displaced 

positions. Then taking vectors from each of those to the centre point and getting the cross products 

of those vectors and averaging to get a normal was attempted. But applying the manipulation 

exceeded the instruction count on vertex shader however at the time the project was not using 

shader model 5.0. Next was to try calculating the differential equation of the equation at that point 

to get two tangent lines from which you could acquire vectors from to cross product to a normal. 

This proved too difficult to implement when having to take to differentiate three components 

instead of two. Instead as tessellation wasn’t being applied the geometry shader could be used to 

get the positions of the surrounding displaced vertexes and subsequently get the vectors and then 

cross product for the normal. 

Tessellation 
When researching dynamic tessellation, a problem that came about is popping would occur between 

adjacent quads due to the shared edges being tessellated by different amounts. The solution in 

Practical Rendering (Jason Zink, 2011) samples the surrounding four edges to the current quad being 

tessellated and calculates how much they will be tessellated. The lower of the two tessellated values 

would be applied to that edge. The current method implemented also achieves this effect the 

problem lies with taking dynamic tessellation further. Ideally if there is little detail in the region 

there would be no reason to tessellate it by a major amount, and vice versa with an area with lots of 

detail, you should tessellate it more than usual but with the current method distance to midpoint 

method it’d be more difficult to implement that sort of solution. However, with the interlocking 

tessellation method provided in Practical Rendering (Jason Zink, 2011, pp. 432-449) popping can be 

avoided while also tessellating high detail and low detail areas accordingly. In a simplified 

explanation using a compute shader a height map would be split into sections and those sections 

variance in height would be sampled and a value generated letting the hull shader know which 

patches to tessellate more and less.  

Applying no tessellation when the mesh wasn’t being displaced came with imperfections. Since the 

midpoint of the two side edges and the middle aren’t being displaced yet but one edge is, these 

ridge-like disruptions appear where the tessellation hasn’t been applied yet. 
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Issue in the dynamic displacement where one edge is being displaced but the midpoint isn’t yet so no tessellation is being applied.  

To fix this problem a check would be made when tessellation the midpoint to see if either of the 

vertices it had been calculated from was being displaced and if so to apply tessellation instead of not 

because the midpoint isn’t yet. 

Geometry Shader 
Since the Sphere isn’t being tessellated triangle adjacency should be able to be used to generate 

more accurate normals. It was attempted however the mesh would not render even after getting 

the order in which the vertices are passed in and trying multiple combinations. Due to time 

constraints it was scrapped and instead just using the three vertices of the triangle was used. 

Although not giving perfectly smooth normals the effect generated was enough but given more time 

using the triangle adjacency more accurate normals would be implemented through the same 

technique but also using vectors between the current vertices and the adjacent ones. 

 

Cropped image of the vertex read order for the geometry shader from Microsoft docs (Mircosoft Docs, 2018) 

As for the particle rotation the temporary fix of shifting the y angle depending on when it’s greater 

or less than 90° and – 90° respectively would be replaced through applying a similar method to 

billboarding quads to face a camera. Instead of using a camera up right and forward vector to shift 

the quad the normals components would be used instead. As well when the quads are generated 

some quads are being redrawn as some vertices are shared between triangles and since a quad is 

drawn at each vertex it doesn’t check if a quad has already been drawn at that position. With further 

implementation a different sphere mesh would be used for the particles constructed using a control 

point mesh instead. Only problem generating normals as there’d be no adjacent vertices to calculate 

them off of. At this point the differential equation of the vertex manipulation equation would have 
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to be implemented to calculate normals from the tangents. However, if calculating the tangents to 

calculate normals, a normal map may as well be used since the normal map just stores necessary 

vectors to calculate normals in tangent space. Since we are already calculating tangents with 

differentiation we may as well apply a normal map since it would provide higher quality normals. 

Normal maps uses the rgb values in a texture to give the xyz values of the normals. The important 

thing to note though is that the normals are given in tangent space. This is so the normal map can be 

applied to any shape in any rotation. If the vectors were stored in world space a normal facing out in 

the z direction when applied to a plane facing in the x direction would be wrong. But if we have 

normals in tangent space and then transform them using the same vertex manipulation and the 

world matrix. (Learn OpenGL Normal Mapping, 2018) 

 

 Pixel Shader 
This version of the Kuwahara filter implemented is the most basic implementation that doesn’t 

attempt to combat its downfalls where it cannot handle noise effectively or block artifacts. If to be 

continued the more complicated versions of the Kuwahara filter would be implemented using a 

generalized Kuwahara filter or the anisotropic Kuwahara filter from GPU Pro. The generalized 

Kuwahara filter instead of taking four square sub regions a disc split up into smaller subregions 

would be used as well as instead of taking the subregion with the smallest variance the result would 

be determined by a weighted sum of the means of the subregions with the smallest variance 

providing smoother region boundaries and fewer artifacts (Engel, 2010, pp. 251-254). The 

Anisotropic Kuwahara filter takes the improvements of the generalized filter further by manipulating 

the shape of the subregions to match the shape of boundaries to remove clustering artifacts from 

regions with directional features (Engel, 2010, pp. 255-261).  

 

Lighting  
In the current model lighting isn’t very scalable having to recreate shaders for different amounts of 

lights. Now, the amount if lights in the shader are hard coded to two and if more were wanting to be 

implemented new shaders would need to be generated. This is wildly inefficient, so another method 

would need to be implemented. One method would be to create a shader that handles a large 

amount of lights and pass a variable to the shader saying how many lights are being passed and to 

do the normal light calculations in a loop that just ends at the amount of lights it’s been told to do. 

Another method that was theorized was to do a render pass for each individual light and blend the 

final textures together and although very scalable in terms of code the performance drop of having 

to render the scene multiple times and do all the tessellation and manipulation per pass would be 

very inefficient just to generate a light. However, to continue on this train of thought deferred 

shading was come to which seems like the most efficient method for a project of this scale. The idea 

is to hold off on the lighting for as long as possible and when rendering the scene to store all the 

geometric information into a G-buffer (all the light relevant textures generated from the first pass) 

that can be passed into the lighting pass. In the lighting pass all the lighting can be applied to the 

geometry as needed. A bonus to this method is vertex data doesn’t need to be passed all the way 

from the vertex shader down to the pixel shader all that needs to be passed is the texture 

information generated. Since the scene has been rendered already the information that is outputted 

to the G-buffer is actually ready for screen space it ensures that all the pixels we calculate lighting 
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for are the only pixels that needed to be lit anyway since any other geometry would have been 

hidden. One of the disadvantages is the amount of data generated from generating all the relevant 

high-resolution lighting maps. (Learn OpenGL Deffered Shading, 2018) 

Shadow mapping 
One of the problems with the current setup of shadow mapping as currently two point can lights be 

used. However, a shadow map is generated using the direction of the light but a point light shines in 

ever direction. In the current implementation we have it, so the direction just points towards the 

object we want shadowed but if this was to be fully implemented into a scene with multiple objects 

all around the light it wouldn’t work. We would need to create a shadow map for each of the axes to 

get accurate lighting. This could be achieved through cube mapping the environment and then 

generating a depth map for each face of the cube. (Learn OpenGl Point Shadows, 2018) This would 

give us shadows in all directions as a shadow map has been generated in every axis direction. A 

similar problem lies in the current solution that was present with the lighting and that is the shadow 

shader is hardcoded to handle only two shadow maps and two lights. A new shader would need to 

be created for a different amount of lights. A similar solution as suggested before could be 

attempted in using a shader that can take in a bunch of lights / shadow maps and then passing a 

value that indicates how many lights and shadows have been passed in and to loop through and 

calculate accordingly due to that value. 
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